Research
Transitioning to a renewable energy economy necessitates the development of new, sustainable energy technologies, to which electrochemistry is poised to play a pivotal role. To this goal, we employ principles at the intersection of (electro)chemical engineering, materials science, and physical chemistry to understand and develop novel electrochemical processes for energy conversion, storage, and sustainable chemical synthesis.

Our main interest is to understand the fundamental science of electrochemical systems while also working close to applications. Technologies of interests include redox flow batteries, fuel cells, and electrolyzers. We aim to understand and control materials using three sets of tools, i.e. (1) micro- and nanofabrication techniques for porous electrodes, (2) functionalization techniques to tailor interfaces, and (3) advanced operando characterization and imaging.
Porous Media
During the last few decades, materials scientists have made notable advances in the development of ordered porous materials for catalysis, energy, separations, and biological applications. However, a key remaining challenge is the development of scalable techniques to manufacture self-standing hierarchically organized porous materials. State-of-the-art electrochemical devices (e.g. fuel cells, redox flow batteries, metal-air batteries) use porous materials with poorly defined three-dimensional microstructures, leading to limitations in performance. Novel applications require the development of materials with sophisticated control over the architecture at different length-scales. For example, selecting an adequate average pore size, porosity, and tortuosity would reduce pressure drop losses, improve mass transport and reaction distribution, decrease ohmic resistance, and maintain a low weight. We develop fabrication techniques to prepare architected materials with various degrees of hierarchical organization.

Novel Coatings

Advanced Diagnostics

Collaborators Sponsors













